Modelling through Polynomial Equations

Problem:

     One dimension of a cube is increased by 1 inch to form a rectangular block. Suppose that the volume of the new block is 150 cubic inches. Find the length of an edge of the original cube. 



Solution:
      Let x be the length of the side the original cube.
            x+1 be the length of one dimension of the rectangular box.

 Recall that the volume of a rectangular box is lwh (V=lwh)

                     150 = lwh
                     150 = (x)(x)(x+1)
                     150 = x^3 + x^2
                               x^3 + x^2 - 150 = 0

 Using Factor Theorem, look for the possible roots of the given polynomial equation. in this case, choose x=5 and use synthetic division

                                        1      1       0    -150     |_ 5
                                                5      30    150
                                        1      6      30        0  ---> 0 remainder

Then, 5 is one of the roots.
Therefore, the length of an edge of the original cube is 5 inches.

 

No comments:

Post a Comment